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1. Introduction. A stationary stochastic process {xt} with finite second moment

has mean Cxt = p and covariance or autocovariance sequence

(1.1)(X - p)(x,+. - A) = a(s), s = 0, ±1,...

The covariance sequence can be expressed in terms of the variance of the process

a(O) and the correlation or autocorrelation sequence

_or(s)

(1.2) Pa = (-) - 0, ±1,...

If the process i3 Gaussian, the mean and the covariance sequence or alternatively

the mean, variance, and correlation sequence completely specify the process.
Inference about the process may be based on a sample of n consecutive obser-

vations x1,..., xn. The sample covariance sequence may be defined as

1 n-h
(1.3) ch = c-h = n Z (xt - )(t+h -), h = 0,1 -1,

tr=1

if p is known and as

1n-h
(1.4) Ch =c* = n Z(Xt -)(xt+h -t), h =0,1,.. ,n- 1,

t=l

if p is unknown; here i = t= xt/n. The sample correlation sequence is defined

as r& = ch/co or as r = c ,/c , h = O,±l,...,±(n - 1), in the two cases. If
the process is Gaussian, the sample mean and covariance sequence or alternatively

the sample mean, variance, and correlation sequence constitute a sufficient set of

statistics. In any case the sample correlations may be used for making inferences

about the pattern of dependence in the process.

Under general conditions on the process, any finite set of correlations is asymp-
totically normally distributed as n --, co. More precisely, the limiting distribution



of v/i(ri - pj),..., vrn(rH - PH) for arbitrary H is normal with mean 0 and a

covariance matrix, say, W. If xt is a linear process

00(1.5) zt = /I + Yv,-,, t = O,+1.,

i=O

with , 0 --yi < 00,

0

(1.6) E Ii < oo
i=0

and {vt} a sequence of independently identically distributed random variables with

Evt = 0 and Ev2 = a2, the elements of W are

0

(1.7) Wgh = E(Pr+g + Pr-g -. 2PrPg)(Pr+h + Pr-h - 2 prPh),
r=

g,h- ,...,H.

The covariance and correlation sequences of {xt} defined by (1.5) are

00

(1.8) o(h) = o(-h) = o 2 j ,,+t, h = 0,1,...,
i=0

_- =7i'Yi+h h=0,,..

(1.9) Ph = P-h 2=0 ' h=,1.

If {xt} is second-order stationary and purely nondeterministic, it can be repre-

sented as (1.5) with the vt's having mean 0 and variance t and being uncorrelated.

In this situation the vt's are the innovations and the errors in prediction one step

ahead.

A type of process that has been particularly useful is the autoregressive process

which satisfies the stochastic difference equation

(1.10) Zfj(t-i-p)=v, t =...,-1,0,1,...,
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where fo = 1. If the vt's are independently identically distributed and the roots of

P

(1.11) izP-i =0
i=0

are less than 1 in absolute value, (1.10) defines a stationary process. If Evt = 0

and £v 2 = a2 < {xt} has a representation (1.5), Ext = p, and the covariance

and correlation sequences are given by (1.8) and (1.9), respectively. In the case of

p = 1 p, = -#I and r, or r is an estimator of -#3,.

A serial correlation coefficient (of order one) is ri or r, or a close approximation

to rl or r .It is of particular interest as providing a test of the null hypothesis that

a sequence of observations is independently distributed. The alternative hypothesis

is (often unstated) that the observations come from an autoregressive process of

order 1. The doctoral dissertation of Geoffrey Watson (1952) dealt with serial

correlations; hence this present paper is related to the early work of Watson.

In the early '40's at least four people nearly simultaneously and essentially

independently derived the distribution of some form of serial correlation when the

Xt's were independently normally distributed with mean 0 and variance O 2 (p =

0 and P - 0). John von Neumann (1941) treated

(1.12) Et= 2 (Xt - Xt 1 )
2

E t=(Xt -i)2
= 2 - 2

~
2 (xt - ')(Xg- -l ) + (x1 - ±)2 + (RX -

Et= J(Xt- t)2

The fraction on the right-hand side of (1.12) is a serial correlation coefficient.

Tjalling Koopmans (1942) studied the distribution of r1 and approximations to

the distribution. R. L. Anderson (1942) found the distribution of the circular form

(suggested by Harold Hotelling)

(1.13) Et=r(xt - i)(Xt-i - i)

where zO - zn. Wilfrid J. Dixon had independently obtained many of the results.

(They were to be included in his doctoral dissertation, but because of the publica-

tions of the others he changed his dissertation topic.) A number of new results were
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published subsequently [Dixon (1944)]. These authors also derived some asymptotic

distributions of the serial correlations, which are asymptotically equivalent to rl.

R. L. Anderson and T. W. Anderson (1950) observed that the distribution of

the circular serial correlation of residuals from a fitted Fourier series has the same

form as the circular serial correlation from the mean. T. W. Anderson (1948) gen-

eralized this result to any serial correlation of residuals from independent variables

constituting characteristic vectors of the matrix of the quadratic form in the numer-

ator of the coefficient. R. L. Anderson suggested "to one of the authors" of Durbin

and Watson (1950), (1951) the investigation of more general residuals. The disser-

tation of Watson (1952), a more extensive study of serial correlation of residua:z,

was under the supervision of R. L. Anderson.

Mann and Wald (1943) derived the asymptotic normality of the sample auto-

covariances in an autoregressive process under the assumption of existence of all

moments of the innovations. The asymptotic covariances (1.7) of the sar .ple cor-

relations for the linear process were given by Bartlett (1946) under the (implicit)

assumption that Evt < oo. Hoeffding and Robbins (1948) proved the asymptotic

normality under the assumption Evt <0 0 for (1.5) being a finite sum; this condi-

tion was weakened by Diananda (1953) and Walker (1954) to Ev' < o. The fact

that the asymptotic covariances depend only on the prccess correlation function

suggests that the condition Ev~t < oo is not necessary. T. W. Anderson (1959)

obtained the limit distribution of vfn(rj - pi) for an autoregressive process of order

one when only ev 2 < oo is assumed. T. W. Anderson and Walker (1964) found

the asymptotic distribution of a finite number of correlations when (1.5) is satisfied

with FZO i72l < 00.

The assumption that the process {xt} is stationary can be relaxed; in the model

(1.5) the vt's do not have to be identically distributed. In that case the process

correlations can still be defined by (1.9). Moreover, the innovations do not need

to be independently distributed. Instead we assume that the vt's are martingale

differences. Let ... C F- 1 C 0Fo C F . C ... be an increasing sequence of o-fields

such that vt is Ft-measurable. We assume that

(1.14) £(vtl '_j) = 0 a.s., t ... ,-1,0,1...

Instead of Ev2 = a as for identically distributed random variables, we assume
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(1.15) £(,,l.F,_j) =a a.s., t = -1,0,1,...,

(1.16)P,, a , o,
nEa

t=1

and

(1.17) sup £6[v,(, > -)l.',-1] . 0

as a - oo; here I(.) is the indicator function. [I(A) = 1 if the event A occurs, and

I(A) = 0 if the event A does not occur.] Condition (1.17) is a kind of conditional

uniform integrability. For convenience we assume that for some K

(1.18) £vt2 < K, t -... ,-1,0,-1,...

(1.19) 2 2

£vt v ,2 < K, t i4 S.

Finally, to define the asymptotic second-order moments of rh we need more

information on the mixed fourth-order moments of the vt's. We assume

In

(1.20) E 0, V5r 4 P , 7,a = 1,2,...,
t=1

where 6, = 1 and , = 0, r 6 s. In addition there is the technical condition

(1.21) E NV < 00.
i=0

Note that autoregressive moving average processes satisfy (1.21). Hannan and

Heyde (1972) derived the asymptotic distribution of the ri's when the v,'s are
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martingale differences. Their conditions are much stronger than ours. In particular,

they assume =2 = 0 2 a.s. and bounded fourth-order moments. A more detailed

comparison of their conditions and ours will be made later in this paper.

The purpose of this paper is to give the very weak conditions for the asymptotic

normal distribution of the sample correlations. A general theorem of Anderson and

Kunitomo (1989) is used. That theorem is based on a martingale central limit

theorem of Dvoretzky (1972). More details are given in this paper than in Hannan

and Heyde (1972).

The organization of this paper follows that of Anderson and Walker (1964).

The case of one sample correlation when p is known is proved first. Then the

theorem is proved for an arbitrary number of correlations. Finally the result is

proved for unknown p.

Theorem. Let {xt} be defined by (1.5), where {-i} satisfies (1.6) and (1.21).

Suppose that {vg} satisfies (1.14), (1.15), (1.16), (1.17), (1.18), (1.19), and (1.20).

Then

ri - P1
(1.22) v- d + N(0, W),

rH - PH

where W = (wgh) and wgh is given by (1.7).

Corollary. Under the conditions of the theorem

rE - pi
(1.23) V] d N(o, W),

LrH PH

where W = (wgh) and wgh is given by (1.7).

2. Proof of Theorem. The proof follows the pattern of Anderson and

Walker (1964). [See also Hannan and Heyde (1972).] First we prove that

V(rj - pI) dN(o, wij); then we take up the case of an arbitrary number of corre-

lations. Let yg = xt - p. Define
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(2.1) -()yy~lP

k
(2.2) Ytk E Ivti

i=0

(2.4) z1 = -Pk ni 2

=k Yt~~~ - Pik

n-I k k

=~n E E^fhfjt-Vt,Vj - Pi E l 7fjtrnvt-3vj
x t=1 i,= f=1 1 s,j 0

n- k k-

t=1 =O =-I t1 ,-o

Note that terms in the summation in (2.5) with t - i = t - h and t - i = t - j are

omitted.

Lemma 1. The limiting distribution of z 1) as n --+ oo is N(O, a 4 VIk) where

k+l 2
(2.6) =~ Z k~

(2.7) -k + 'Y,'+-r-Plk( fY' i"+r + 7f'iY'..r)I
i=0
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and y'i = -y for 0:_ i :5 k and -y'i = 0 otherwise (that is, for i < 0 and i > k).

Proof of Lemma 1. By changing indices of summation we can write

I n- k k kI(2.8) !^t~~ ' V-vt 1 i 7 + Ey 'Yilrtvt+

- Pik EZ E ^NIYi+rt-it-i-r + E. YirVt-i+r •
t=1 i=O \r--I r- /1

Another change of indices and the addition and subtraction of a finite number of

terms (the number not depending on n) changes (2.8) to

I k +I 1 V (l)

(2.9) 1= n k$ I t( t 1 n = (--) V--

(hre 1) = Ek+I 6(1)
where x .,r=- rkVt-r • We show that (2.9) has the limiting distribution

N(0,a 2 Vik) by means of Theorem 1 of Anderson and Kunitomo (1989). Condi-

tion (1.17) implies

(2.10) sup V- P 0.
t=-k+l,...,n nt

[See the proof of Theorem 2.23 of Hall and Heyde (1980).] Therefore

(2.11) sup -t .!P4 0.
t=l,...,n n

Furthermore (1.16) and (1.17) imply

(2.12) n 1: v9_r 2

[See Anderson and Kunitomo (1989), Theorem 2, for example.] Then
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n(2.13) 1: V,_rVt,__P+ 0, r 54 s.
t=1

[Application of Theorem 1 of Anderson and Kunitomo (1989), for example, with

vt-, replaced by vt and vt-, replaced by zt for s < r shows that V/n- times the

left-hand side of (2.13) has a limiting normal distribution.] Thus

I n 2 k+I

(2.14) k+I~ 4 1 2bI) =

t=1 r- I

The conditions of Theorem 1 of Anderson and Kunitomo (1989) are satisfied with

S() This completes the proof of Lemma 1. 3

Let

n-I 00l 00

(2.15) z, - -f\t=j ,.i=0 t=i ,.P-

Lemma 2. The limiting distribution of z 2 as r -+ oo is N(0, a V/), where

(2.16) .7.

i=0

Proof of Lemma 2. The limit of N(0, a 4 V'k) is N(0, o4 VI) as k -- oc since

(2.17) V 2k 4 I + 7 ()Y,+i-r - PY(7>-*+r + 3"Y'r)} =

where t = i for 0 < i and 1 = 0 for i < 0. To complete the proof of Lemma 2
(we s (s' 0 as k --+ oo uniformly in T. Let

we shall show that zn - zn



00

(2.18) Utk -= yt - Ytk = 7ivt,-i.
t=k+l

Then
n-I

(2.19) z Z - 71 E,[(Yk + Utk)(yt+,k + Ut+i,k) - YtkYt+,k]
t=n

n

+7= E [-PI(Ytk + Utk) + Plk tkI
t=1

n-I
7n '[utkyt+l,k + Yt,kut+I,k + utkUt+I,k]

t=1

1 t1Y k - 2 p iY tkU k - IU k ]

t=1

where the prime on )- denotes that terms VtVo with t = s are omitted. Let

n-I n

(2.90) 7 = Uiky+,k,.., 72 = -I utk
t=1 t=1

Then (2.19) is (1//i)"= 1
T h.

Consider, for example,

n

(2.21) _T6 = nZUk

Pg =1
n o

t=1 ijJ--i<j

(If pt = 0, T4 = T 26 = 0.) The expected value of the square of (2.21) divided

by 2 is

(2.22) E E
Vnt=1 i~j +I

n E E

t,t'=l i,j,i'.j'-h+1
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By the Cauchy-Schwarz inequality

(2.23) EIVt-,vt-jV,-,,Vt'Ij' V_ I EV ,V, ,,i,

< K2 .

Then (2.22) is

00 n1

(2.24) 1 Y,7i~ij E4VtVt_,(1 '....O)g(V2 ilrt_:-i),

(2.24) is not greater than

(2.25) -(I - -,

ij, j,./+( =1~

This quantity is made arbitrarily small by taking k sufficiently large. Hence T6 -P 0

uniformly in n as k --+ 0o.

For T4 we consider

1 y2 2 k

(2.26) 7n Z k = -7n
t=1 ,jO

i<j

2 n k-I k
= 7n= FE E ',fvt-,v,-

t=1 i=0 j=i+l

2 n k-I k-i

= -",aY7+hvt-,vt-,-h
t=1 i=O h=1

k-I n k- i\

= 2 E ^/i E (\ji+hvt-i-h vti.
,=0 /n t=I h=

For each i the term in (2.26) that is multiplied by yi has a limiting normal distribu-

tion [by Theorem 1 of Anderson and Kunitomo (1989) with z, = "=1 7i+hVt-i-h],

and hence the sum on i has a limiting distribution. Since Ptk -- pi, the term T4 4 0.
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It follows from the Cauchy-Schwarz inequality and the behavior of E"' y2 /Vi

and '' utk/vl/ that T5 -P 0. That the first three terms converge stochastically to

0 follows similarly.

Lemma 3. The limiting distribution of z(0 is N(O, a4 Vi).

Proof of Lemma 3. We have

1 3V
(2.27) ()- z( 1 Z* "2 1t i Ft _o

ti= t=1-- i= O l-

where

n--i

1:28 V.2 _ P, E f.V

,=-i 8=1

= Z v 1- - pn-( .

=-i a=n-i-i+

where

n--i n

(2.29) T =' E V -

8=1-i 8=1

0 n

- _- V.2 < --
a=l-i n

The second term on the right-hand side of (2.27) is Pt times

-- 1" E _. + 2 E 2
(2.30) 7 E ?T(°) 0 2 +t-

i=0 .=1-i i=n+l 8=1-i

i=1 2=n-i+l i 8=l

12



The expected value of the first pair of terms on the right-hand side of (2.30) is not

greater than

(i--0 ii~ =0 =n+"

i=0 i= +1

000

~ K= ~ nlK + K
00n+1 /=+

for m < n. The second term on the right-hand side of (2.31) is made arbitrarily small
by taking m large enough. The first term is made arbitrarily small by taking n large

enough, given m. The second pair of terms on the right-hand side of (2.30) is treated
similarly. Then Markov's inequality implies that (2.30) converges stochastically to

0.
The absolute value of the first term on the right-hand side of (2.27) has expected

value not greater than

(2.32)- 1 h00 17+l cY')
i=0

71 2 7F"-, + 2yj -71 1-tl -1)1"17+ Kn it I til tIy+uI(2i + 1) + > II h'i+1I(2n -0

< L i=0 i=n-+l I

[ n-I 
0000

< = [2j I-I.I-y+ i+ 2 -F+ I yI +jjn+'E -y,. K

2 [ n ~ 00 10

iO i=n-+l i

The argument used for (2.31) shows that the right-hand side of (2.32) can be made

arbitrarily small uniformly in n.

Lemma 4. Under the assumptions of the theorem

o

(2.33) co 0  af E f2 .
i=O

13



Proof of Lemma 4. We can write co as

(2.34) 1 E ! ZIYtk + E YtkUtk +1 n
t=l t=l t=l t=l

The last term in (2.34), which is nonnegative, has expected value

(2.35) n! U 2 - n 00 Y~~ ...~~(2.35) 1E E~ -- 1 7,jvt-ivt-j

t=l t-I i,j=k+1

n 0

t=1 i,j=k+l

i: 1 2K

~=k+1

This can be made arbitrarily small by taking k sufficiently large.

The first term of (2.34) is

(2.36) n Ydk = j E Z tiZfjVt-iVt-j
t=l t=1 i,j=O

k n2 n k

E + E Yfi'YjVt-iVt-j.
i=O n_1 t=1 s,j=o

ty o 2k 0t2,

The first term on the right-hand side of (2.36) converges in probability to r2 "k 0 i,
the limit of which is a2 X0 y as k -+ c. The second term in (2.36) is 2/vn'
times

(2.37) Z7E E yZ - vjv~j
t =0 i=j+l t= h j=0 h=1

Addition and subtraction of k(k - 1) terms changes (2.37) into

(.38)1 n yj1 hvt-h(2.38) t=1 \=o h=1

14



Theorem 1 of Anderson and Kunitomo (1989) with zt = = h=l -j+hVt-h

shows that the limiting distribution of (2.38) is normal with finite variance. Hence

the second term in (2.36) converges stochastically to 0.

The second term in (2.34) is in absolute value

(2.39) 2 1-ytut <_2 -Z2 y - utk,

which converges stochastically to 0 by the preceding results. The lemma follows. I

Lemma 5. Under the conditions of the theorem V/i(rj - pI) dN(O, wu).

Proof of Lemma 5. We have

F'n-I1
(2.40) Vn/(ri - p,) v F[t= YYt+1 -P]n= y2 -PI

Et31 tYt+1-P ~ 1 t~

Lemma 5 follows from Lemmas 1 to 4.

The theorem is proved by showing that

H H n- n~= 2h-p ']/'
EH (h

h= l=hZna/
CO

has a limiting normal distribution for any constants al,..., all. The generalization
of Lemma 1 pertains to y 2 Hf (h), ih sm

of az,n , which is modified by addition and subtraction

of a finite number of terms (the number not depending on n) to

n k+H
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where

H

(2.43) 6= Zal,60)-- E t hrk•

h=l

Lemmas 2 and 3 show that

H H

(2.44) )*,. , - _€,,4.
h=1 h=1

uniformly in n as k --+ oo. Then the theorem follows.

3. Proof of Corollary.

Lemma 6. Under the conditions of the theorem

(3.1) --+

Proof of Lemma 6. We have

(3.2) n-(i - p)' = 1 - L!) - J)(Zt+. -

ff-(n-1)

n- 00

=

S(n-1) ij=o

= (1 - iff= O '+' "

<00 0

S=-0o i=6
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Then (3.1) follows by Tchebycheff's inequality. I

Proof of Corollary. We have

(3.3)

1 n-h

vln[c-h - " [ ()]- (x - )- n(h)

t=t
nn-h

-= -a [ch - a (h )J - ( - ) .-

t -h h'( )7 _ , :..1. (X+,, , + n _n 11)2

= vln[cl, - a(h)] + op(1).
Since the set v/fi - a(l)],., %Fn[c f - a(H)] has the same limiting distribution

as the set vf' [Cl - 0(1)],., V/n[cH - a(H)] and c0- 4a(0), the limiting distribution

of the set vfn(rl* - p), ..., /F(r - PH) is the same as the limiting distribution of

the set v n(r, - p),.. , /n(r H - P Ht)-

4. Discussion

4.1. Assumptions on Moments of Innovations. Although the asymp-

totic distribution of autocovariances may depend on finiteness or boundedness of

fourth-order moments, the asymptotic distribution of the autocorrelations has been

demonstrated here on the basis of boundedness of second-order moments and of

mixed fourth-order moments; these conditions are weaker than the condition of

boundedness of the pure fourth-order moments. In fact the boundedness of second-

order moments is used in Lemmas 3,4, and 6, and the boundedness of mixed fourth-

order moments is applied in Lemma 2; these conditions may be slightly unnecessarily

strong. However, (1.20), which involves mixed fourth-order products, is essential

to obtain the covariances of the limiting distributions. It should be noted that the

17



conditions do permit heterogeneity of variances. In the case that the innovations

are independently identically distributed only the second- order moment is assumed

finite, but that implies that the mixed fourth-order moments are finite and are de-

termined by the second-order moments (and the fact that the first-order moment is

0).

4.2. Comparison with Autoregression. In the case of the process defined

by (1.10) the boundedness of second-order moments and mixed fourth-order mo-

ments is not needed. Conditions (1.14), (1.15), (1.16), (1.17), and (1.20) suffice. In

fact, it is not assumed that £vt < o. See Anderson and Kunitomo (1989).

4.3. A More General Mixed Fourth-Order Moment Limit. Instead of

(1.20) we can assume

(4.1)- o 0,4or s ,2 ..

t=1

where {rr,} is arbitrary. Then in the theorem and corollary w,h given by (1.17) is

replaced by

00

(4.2) ' Tr.(pr+g + Pr-g - 2prpg)(Pr+h + Pr-h - 2 PrPh).
rs-l

The major change in the derivation is that a generalization of Theorem 1 of Ander-

son and Kunitomo (1989) is applied to obtain a variance in Lemma 1 of

k+l
(4.3) E rk sk

) 
*(

r,s=1

4.4. Comparison with a Theorem of Hannan and Hey-c. As noted in

the introduction, Hannan and Heyde (1972) generalized the theorem of Anderson

and Walker (1964) to innovations being martingale differences. The conditions in
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the present paper [ as in Anderson and Kunitomo (1989)] are weaker than those of

Hannan and Heyde. In both papers (1.6), (1.14), and (1.21) are assumed. Instead

of (1.17), (1.18), and (1.19), Hannan and Heyde assume that there exists a constant

c and a random variable X such that

(4.4) Pr{IvtI > u} 5 c Pr{IXI > u}, Vu > 0,

and

(4.5) EX 4 < 00.

This condition implies that the pure fourth-order moments of the innovations are

bounded. Instead of (1.16) they assume

1n

(4.6) n _ 0,2 a.s.
t=1

and

(4.7) 'v2 = or2.

In addition to (4.1) they assume

(4.8) £V2Vt,,_rvt,_ = a'4 T, r, s = 1,2 ....

The conditions of Hannan and Heyde are considerably stronger than those of this

paper in that they assume that variances and mixed fourth-order moments of the

innovations are homogeneous.

19



References

Anderson, R. L. (1942), Distribution of the serial correlation coefficient, Ann. Math.

Statist., 13, 1-13.

Anderson, R. L., and T. W. Anderson (1950), Distribution of the circular serial

correlation coefficient for residuals from a fitted Fourier series, Ann. Math.

Statist., 21, 59-81.

Anderson, T. W. (1948), On the theory of testing serial correlation, Skand. Aktua-

rietidskr., 31, 88-116.

Anderson, T. W. (1959), On asymptotic distributions of estimates of parameters of

stochastic difference equations, Ann. Math. Statist., 30, 676-687.

Anderson, T. W., and Naoto Kunitomo (1989), Asymptotic robustness in regression

and autoregression based on Lindeberg conditions, Technical Report No. 23,

ARO Contract No. DAAL03-89-K-0033, Department of Statistics, Stanford

University.

Anderson, T. W., and A. M. Walker (1964), On the asymptotic distribution of
the autocorrelations of a sample from a linear stochastic process, Ann. Math.

Statist., 35, 1296-1303.

Bartlett, M. S. (1946), On the theoretical specification and sampling properties

of autocorrelated time-series, J. Roy. Statist. Soc. Supp. 8, 27-41, 85-97.

[Corrigenda (1948), 10, 200.]

Diananda, P. H. (1953), Some probability limit theorems with statistical applica-

tions, Proc. Cambridge Philos. Soc. 49, 239-246.

Dixon, Wilfrid J. (1944), Further contributions to the problem of serial correlation,

Ann. Math. Statist., 15, 119-144.

Durbin, J., and G. S. Watson (1950), Testing for serial correlation in least squares

regression. I, Biometrika, 37, 409-428.

Durbin, J., and G. S. Watson (1951), Testing for serial correlation in least squares

regression. II, Biometrika, 38, 159-178.

Dvoretzky, Aryeh (1972), Asymptotic normality for sums of dependent random vari-

ables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 2. University of California Press, Berkeley and Los

Angeles, 513-535.

20



Hall, P., and C. C. Heyde (1980), Martingle Limit Theory and Its Application,

Academic Press, New York.

Hannan, E. J., and C. C. Heyde (1972), On limit theorems for quadratic functions

of discrete time series, Ann. Math. Statist., 43, 2058-2066.
Hoeffffding, Wassily, and Herbert Robbins (1948), The central limit theorem for

dependent random variables, Duke Math. J., 15, 773-780.
Koopmans, Tjalling (1942), Serial correlation and quadratic forms in normal vari-

ates, Ann. Math. Statis., 13, 14-33.

Mann, H. B. and A. Wald (1943), On the statistical treatment of linear stochastic

difference equations, Econometrica, 11, 173-220.

von Neumann, John (1941), Distribution of the ratio of the mean square successive

difference to the variance, Ann. Math. Statist., 12, 367-395.
Walker, A. M. (1954), The asymptotic distribution of serial correlation coefficients

for autoregressive processes with dependent residuals, Proc. Cambridge Philos.

Soc., 50, 60-64.
Watson, G. S. (1952), Serial Correlation in Regression Analysis, Mimeo Series No.

49, Institute of Statistics, University of North Carolina, Chapel Hill, N.C.

21



I Form ApprovedREPORT DOCUMENTATION PAGE I 0MB No. 0704-0188

P9.aiic tecortimg ourojon $101 !"Is Z'?ecltor of mcf'aton is estimated to avetaqe I our oer -esorse. nci,..ain' te t'."e 'or re~vn instructions. searcning emtting oats sources.
;atftwirq at'd maintaining t 'i data needed. and coIIraletlflq and ,ee*nq Ine Cottention' of mf ormatior Send ~om mer't regaarding i ourven estirmate or anv otner asdedt of trits
Cfcano t~r f forf-ation.. nciuding suggestions for reducing tr't o,.roen to 4VAiiqtOrl MeAlaarlers Services. Directorate for .tfnr,mao Oceraition and 'kewns i. I iS ;eflhvon
Davis migrwav. suite 1204. Arfftig to, 22202-4302, and to one office r# Man agerent and Sudqet Paoerwot. Reduction Project 0704-0 IS8). Wasninqton. OC .0O501,

1. AGENCY USE ONLY (Leave Wlank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I April 1991 Technical Reiort

4. TITLE AND SUBTITLE jS. FUNDING NUMBERS

The Asymptotic Distribution of Autoregressive I
Coefficients

6. AUTHOR(S)

T. W. Anderson ,ZfiALO3 -Y9K 06 53

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Department of Statistics
Sequoia Hall 26
Stanford University
Stanford, CA 94305-4065

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

U. S. Army Research Office AEC EOTNME

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

A" ?6399d.S--M'A
11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

Ila. DISTRIBUTION4 I AVAILASWLTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The asymtotic distribution of a finite set of autocorrelations
is obtained for a time series from a linear stochastic nrocess. The
disturbances (or innovations) are martingale differences with bounded
variances and bounded mixed fourth-order moments satisfying a uniform
conditional square integrability condition. The conditions are
weaker than those used previously for such asymntotic distributions.

14. SUBJECT TERMS IS. NUMBER OF PAGES

autocorrelations, asymptotic distributions, martingale 1.PRICECODE
differences, bounded second-order moments

17. SECURITY CLASSIFICATION I16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMTATION OF ABSTRACT
OF REPORT I OF THIS PAGE Of ABSTRACT

MUNCASIFIED I NCASSIFIED I UNCASSIFIED UL
NSN 7540-01-2W0.550 Standard Farm 296 (Rov 249)

zW9101


